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of soldered 4 mil wires at 100 years predicted from measured ∆R and ∑ at 30 years. 
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Steven Jensen, Mark Havstad, James Cheng,  

Zoher Chiba, Constantine Hrousis, William McLean, Mark Oldaker.  
 

Abstract 
 
   Gold wire radius loss (∆R±∑) measured in metallurgical sections of Pb-Sn-In solder 
mounds of a set of headers with 4 mil gold wires at age 30 years together with a careful 
reconstruction of their temperature/time history prove that the long-term gold-indium 
reaction at low temperatures is controlled by diffusion of indium from the solder through 
the AuIn2 reaction product layer to the gold surface, i.e. proportional to the square root of 
time, ∆R=~√time. The dependence of the standard deviation data scatter ∑ on radius loss 
∆R, i.e. ∑=f(∆R),  is deduced from data sets of 1.5 mil gold wires together with this small 
set of measurements of 4 mil wires. These two data sets are really insufficient to have 
complete confidence in the soundness of the function ∑=f(∆R). Its validity is somewhat 
“vetted” by showing its consistency with the ∆R±∑, ∆R±2∑, ∆R±3∑ values observed 
during the approximately 30 year life of 1.5 mil headers held at higher temperatures and 
hence larger ∆R loss. That larger ∆R loss is comparable to the ∆R loss expected over 100 
years for the 4mil wire sets analyzed here at their lower temperature.  Hence the values of 
∑=f(∆R) are added to ∆r=~√time to predict ∆R±∑, ∆R±2∑, ∆R±3∑ for 4 mil wires up to 
an age of 100 years at temperatures they experienced during their first 30 years. ∆R±3∑ 
values at age 100 years are predicted to be less than 24µm. 

Diffusion control of the gold loss reaction, ∆R=~√time, implies that the reaction 
product layer is integer, without cracks that would permit rapid transport of indium. That 
requirement is readily fulfilled in un-constrained planar geometry where the growing 
product layer can expand without resistance. However, in circular geometry relevant here 
for gold loss of 4 mil wires, an existing reaction product layer (AuIn2) is constantly 
expanded by the next layer of AuIn2 formed below it at the gold surface. Hence cracks 
can develop unless the mechanical properties of AuIn2 and of the surrounding solder are 
such that the solder can con tinuously plastically deform the existing AuIn2 layer to 
prevent cracking or to “heal” any cracks that form. Nano-indentation measurements show 
that AuIn2 is not brittle, but that its hardness and elastic modulus are higher than those of 
gold and of the solder components. The radial metallurgical sections reveal that locally 
“healing” does not always succeed since the remaining gold wire frequently does not 
have circular geometry, but rather has often “flat spots” where more rapid gold loss has 
occurred and thicker AuIn2 has formed above the flat spots. Hence while “on average” 
the gold loss is diffusion controlled, proportional to √time, locally there are clearly spots 
where the gold loss and AuIn2 formation is greater. The strength of the surrounding 
solder needed to heal the expanding AuIn2 layer is weakest where the wire exits from the 
solder mound. Axial sections through the center-line of wires indicate that at the exit 
point enhanced reaction may indeed occur.  
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I) Introduction 
 

The reaction of gold with indium in Pb/Sn/In solder mounds forming gold-indide 
(AuIn2) initially proceeds linearly with time [1] and that functional dependence has been 
used at LLNL and elsewhere [2] to conservatively predict gold loss with the equation 
((gold radius loss ∆R=1.45*10^10*exp(-7990/T°K)*time(month). The reaction changes, 
however, to square root of time dependence with increasing gold loss [3], clearly 
detectable at elevated temperatures, where data can be acquired in relatively short time. 
(Gold radius loss ∆R=1.51*10^7*exp(-5245.3/T°K)*√time(month)). Reliably 
documenting this change-over to square-root of time dependence at low temperature 
(substantially less than 50°C) requires experiments that last over many years.  

 
Those reliable long time/low temperature data have not been available until now 

making it necessary to rely on the linear time dependence for conservative long-time 
predictions of critical components.  

 
For the reaction of gold with indium alone equations that incorporate both the linear 

and the square root of time dependence have been developed by Millares [4] based on 
short-time experiments at temperatures at and above 50°C.  

 
In this report we have for the first time accurate temperature history data for a set of 

headers exposed to low temperatures for about 30 years and a sufficient number of header 
solder mound sections to determine a well defined average gold wire radius loss ∆R 
together with a value of the standard deviation data scatter ∑ around ∆R deduced from a 
normal distribution fit to the data. We reconstruct the day to day temperature history of 
samples that have spent at a variety of locations approximately thirty years at 
temperatures varying between 7 °C and 40°C and show that this temperature history 
applied to the linear model of reference [1] overestimates the gold loss by up to a factor 
2.8, while, in contrast, the square root of time model of reference [3] predicts the 
measured gold loss within the experimental error.  
 
 
 

                                                
[1] Reaction Between Thin Gold Wires and Pb-Sn-In Solder, Part A. W. J. Siekhaus, 
[2] Gold-Indium Intermetallic Compounds: Properties and Growth Rates. J. E. Jellison, 
http://nepp.nasa.gov/DocUploads/5858DEF9-1650-445E-
AB08C869805951CA/Gold%20Indium%20Intermetallic%20Compounds%20Properties
%20and%20Growth%20Rates.pdf 
[3] Reaction Between Thin Gold Wires And Pb-Sn-In Solder, Part C. W. J. 
Siekhaus,  LLNL-TR-469341. 
[4] Reaction/Diffusion In The Au-In System. Millares, M. Pieraggi, B., Solid State 
Ionics, 63-65 1993, 575-580. 
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II) Data 
 
II.1) Gold radius loss measurements 

To generate the most information from the limited set of headers, particularly to 
establish the data scatter ∑ around the mean radius loss ∆R, both solder mounds of five 
sets of headers were sectioned radially, and some headers were also subsequently 
sectioned axially, as shown in figure 1. 

 
Figure 1. Images of a radial and an axial section of one header. 
 
One set of headers had been held “bare” in “Storage” at a controlled temperature of 20°C, 
while the other sets identified in the table below by numbers 33 to 94 had a widely 
varying temperature history discussed below. Table I lists the mean value of the gold 
radius loss ∆R together with the data scatter ∑ deduced from a normal distribution 
function fit to the data sets. 
 
Identification	   Time,	  

Month	  
Average	  Radius	  
Loss	  ∆R,	  µm	  

Data	  Scatter	  
Standard	  Deviation	  

∑,	  µm	  

Data	  Scatter	  
%	  of	  ∆R	  

Storage	   333.5 4.685 ± 0.25 ±  5 
33	   352.5 5.675 ± 0.95 ± 16 
48	   336.0 6.175 ± 1.49 ± 24 
76	   336.0 7.613 ± 0.95   ± 12.5 
94	   336.0 6.050 ± 0.65 ± 11 

Table I. Measured average gold radius loss ∆R and data scatter of each data set. 
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II.2) Time/temperature history of the data sets. 
 
While the headers identified as “Storage” in table 1 were held at a controlled 

constant temperature of 20°C, the other headers were located during their life history in 
bunkers at different locations, for various lengths of time, and in addition were contained 
in various configurations, with an added heat source. Figure 2 indicates the steps required 
to create an accurate time/temperature history for the wide variety of storage locations, 
named for simplicity north, south, east, west…. Accurate records were used that 
document each set’s time at a particular storage location together with its specific 
configuration (i.e. bare, in device, in container, in delivery vehicle…). The configuration 
changed frequently during the storage time at a location, changing thereby the set’s 
temperature. Each location has an “external” temperature record, sometimes provided by 
NOAA (the National Oceanic and Atmospheric Administration). The bunker’s thermal 
properties change the seasonal approximately sinusoidal external temperature profile 
(blue trace in figure 2) to an internal approximately sinusoidal profile (red trace in figure 
2): the internal sinusoidal amplitude is smaller, its mean temperature shifts “up” by ∆T1, 
and its phase shifts by Φ radians. The presence of a heat source increases the set’s 
temperature by ∆T2 whose magnitude depends on the particular configuration it is held 
in. The bunker’s and the configurational temperature effects were applied to create a day-
by-day history of each header set.  The rate of gold loss ∆R(time) is governed by an 
equation of the form ∆R=B*exp-(A/T)*f(time). Figure 3 demonstrates why it is 
necessary to use the actual sinusoidal temperature history rather than the average 
temperature to determine gold loss. 

 

 
Figure 2.  Bunker and storage configuration effects on header set’s temperature. 
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The rate of gold loss depends exponentially on activation energy and temperature; 
hence the gold loss during the time where the sinusoidal temperature is above average 
temperature is much larger than that during the time below average. 

 
 

Figure 3. Ratio = (reaction product formed over one year using the actual sinusoidal 
temperature/reaction product formed using the mean temperature) for a reaction 
described by Constant*exp(-Activation Energy/Temperature) as a function of activation 
energy and temperature amplitude. The mean temperature is 283°K.  

 
Figure 3 shows that for a chemical reaction with a “typical” activation energy of 
20kcal/mole and a sinusoidal amplitude of 10°K around a mean temperature of 283°K the 
gold loss is under-estimated by 40% if the average temperature is used. For a reaction 
with an activation energy of 80kcal/mole the reaction product formation would be under-
estimated by a factor 19.  
Unfortunately there exist at the time of this report only for one bunker at a northern 
location a reliable set of external and internal temperature measurements from which a 
bunker’s effect on temperature can be deduced, displayed in figure 4. 
Figure 4 shows first that temperature measurements were done correctly at this location: 
The sinusoidal fit (blue line) to the external temperatures (blue dots) agrees closely with 
NOAA data (brownish dots). At the other (southern) location where data are available the 
temperature measurements were not done correctly, there the blue fit line deviates 
substantially from the NOAA data. 
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Figure 4. Daily external (blue) and internal (red) temperatures measured at a northern 
location and NOAA average external temperatures (brownish), together with (in boxes of 
the same color at the bottom of the figure) the parameters of sinusoidal fits to the data. 

 
Figure 4 further illustrates how a bunker changes external temperature into internal 
temperature: the large daily external temperature variations (blue dots) are damped out by 
the thermal inertia of the bunker so that their internal amplitude (in red) is reduced a few 
degrees. Figure 3 demonstrates that only a small error occurs if one uses the average of 
that small temperature fluctuation when calculating gold loss. That average of the internal 
temperature is represented by the sinusoidal fit (red line). The boxes at the bottom of the 
graph show the parameters of the fit equation:  

Temperature (°C) = m1-m2*sin((m0/365)*2π+m3).  
 

Here m1 is the average temperature, m2 the amplitude of the sine, m0 is the day of the 
year, and m3 the phase of the sine in radians. The phase of the fit changes from 
m3=1.2668 (external, blue) to .78861 (internal, red), a phase shift of Φ = 0.48 radians, 
equivalent to approximately 28 days. The average “upshift” in temperature is ∆T1=2.6°C 
(from m1=4.511 (blue) to m1=7.0682 (red)) and the external amplitude m2=17.325°C 
(blue) is reduced by about a factor two to internal amplitude m2=8.2055°C (red). The 
sinusoidal fits with a single sine component are NOT a perfect fit, as can be seen in the fit 
to the NOAA data: the lowest temperatures are slightly underestimated. 
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Figure 5. Estimation of bunker temperature amplitude, upshift and phase shift based on 
the assumption that these bunker effects vary linearly with external temperature 
amplitude.  

 
Since no other external/internal temperature measurements are available at other 

locations, the following assumptions were made to estimate the bunker effect there: 1) the 
bunker effect is zero if there is constant external temperature year-round; 2) the bunker 
effect varies linearly with external temperature amplitude.  With these assumptions 
amplitude changes, temperature upshifts and phase shifts can be estimated from figure 5. 

The linear fit equations shown in boxes in the left of figure 5 are applied in the 
calculation of daily temperature at all bunker locations. Figure 5 includes data from the 
incorrectly measured southern location after applying a correction to those data.  

The temperature increase ∆T2 due to the presence of a heat source has been the subject 
of recent measurements and modeling calculations that have been leading to differing 
result. Here it is chosen to be 9°C when the headers were held in an additional 
storage/transportation container, and 5°C otherwise. 
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III) Test of reaction models  
 

III.1) The linear reaction model  
          
          ∆R(µm)=1.45*1010*exp(-7990/T(°K))*time (month)                     (1) 
 
The time/temperature history data described above were used for all sets in the linear 
reaction model, only two examples of which are shown here in figures 6 and 7. 
 

 
 
Figure 6.  The header temperature (upper red line, °C), and the calculated monthly radius 
decrease (green line, ∆R/month, µm/month) and its integral ∆R (lower red line, ∆R, µm) 
of the header set labeled “storage” using the reaction rate equation (1). 
 

Both figure 6 and figure 7 show the discrepancy between the calculated radius loss 
(red circle) and the radius loss (black circle) measured at ~ 104 days and demonstrate 
clearly that the linear model overestimates the rate of reaction and hence cannot be used 
for long term predictions of gold loss at long exposure times. 
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Figure 7.  The header temperature (upper thin red line, °C), and the calculated daily 
radius decrease (green line, ∆R/day, µm/day) and its integral ∆R (lower fat red line, ∆R, 
µm) of the header labeled “48” using the reaction rate equation (1). 
 

 

 
 
Table II. Comparison of the radius loss ∆R predicted by the linear model with the 
measured radius loss. 
In Table II computed radius losses for all header sets are shown to exceed measured 
losses by as much as a factor 2.8. The linear reaction model of equation (1) clearly can 
NOT be applied to predict radius loss for long term exposure at low temperature. 
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III.2) Test of the diffusion-control reaction model. 
    
∆R(µm) =1.505*107*exp(-5245/T(°K))*√time (√month)                                (2) 
 

 
Figure 8.  The header temperature (thin upper red line, °C), and the calculated daily 
radius decrease (green line, ∆R/day, µm/day) and its time integral ∆R (lower red line, 
∆R, µm) of the header set “storage” using the reaction rate equation (2). 

 
Figure 9.  The header temperature (upper thin red line, °C), the calculated daily radius 
decrease (green line, ∆R/day, µm/day) and its time integral ∆R (lower fat red line, ∆R, 
µm) of the header labeled “33” using the reaction rate equation (2). 
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Figure 10.  The header temperature (upper thin red line, °C), and the calculated daily 
radius decrease (green line, ∆R/day, µm/day) and its time integral ∆R (lower fat red line, 
∆R, µm) of the header labeled “48” using the reaction rate equation (2). 

 
Figure 11.  The header temperature (upper thin red line, °C), and the calculated daily 
radius decrease (green line, ∆R/day, µm/day) and its time integral ∆R (lower fat red line, 
∆R, µm) of the header set labeled “76” using the reaction rate equation (2). 
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Figure 12.  The header temperature (upper thin red line, °C), and the daily radius 
decrease (green line, ∆R/day, µm/day) and its time integral ∆R (lower fat red line, ∆R, 
µm) of the header labeled “94” using the reaction rate equation (2). 
 

 
Table III. Comparison of the radius loss ∆R predicted by the non-linear model (~√time) 
with the measured radius loss. 
 

Figures 8 to 12 display and table III summarizes the excellent agreement between the 
radius loss (red circles) calculated by equation (2) and the measured radius loss (black 
circles), both at constant temperature and at widely varying temperatures. This close 
agreement demonstrates clearly that the non-linear model (~√time) correctly describes 
the rate of reaction during long-term exposure at low temperatures and can be used with 
confidence to predict the radius loss for times beyond the time where these measurements 
were made. Table III summarizes the results and demonstrates that the difference 
between measured and calculated radius loss is always well with in the data scatter ∑ of 
the experimental data for exposures with widely varying temperature history. That fact 
implies that the activation energy of this rate equation is correct.   
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IV) The calculated average gold radius loss ∆R at age 100 years of set “76” by 
quadrupling its time/temperature history. 
 
 Section III.2 demonstrates that gold radius loss ∆R in PbSnIn solder mounds is 
controlled by diffusion of indium through the reaction product (AuIn2) layer and is 
correctly described for long term exposure at temperatures below 50 °C by the equation 
(2) using the actual time/temperature history. As an example, in figure 13 the results of 
radius loss calculations are shown that occur during approximately 100 years by adding 
the sinusoidal part of the time/temperature history of the set “76” (figure 11) three more 
times. Set “76” experienced the highest temperatures during its life. 

 
Figure 13. The radius loss ∆R (thick red line) of a 4 mil gold bridge-wire expected 
during approximately 100 years while experiencing the sinusoidal temperature history of 
the set “76” three more times.  
 
The result is a radius loss of approximately 14.5 µm, about twice as much seen above in 
figure 11 for the set “76” at age 30 years, as expected for a reaction proportional to the 
square root of time. 
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V. Estimate of the dependence ∑=f(∆R) of the standard deviation data scatter ∑ on 
the average radius loss ∆R. 
 
 For critical components it is equally important to know the data scatter ±∑, ±2∑, 
±3∑ around the average gold radius loss ∆R. The magnitude of statistical variations ∑ of 
chemical reactions depends most likely both on the extent of the reaction (here ∆R) and 
the temperature at which the reaction occurred. Hence to make an estimate it would be 
ideal to have several sets of samples that have been aged at constant temperatures in the 
range of interest for very long times and with sufficient numbers that a cumulative 
distribution function could be fit revealing both ∆r and ∑ with good confidence. 
Unfortunately there are now known only sets of 1.5 mil wires aged at 22.5 and 34.6 
degree centigrade for 159 and 123.5 month, respectively, and the 4 mil wire sets 
discussed here.  

 
 

Figure 14. The Gaussian (“normal”) cumulative distribution function fit to the 1.5 mil 
data sets (see fit parameters m2=∆Raverage and m3=∑ in the boxes). 
 
In figure 14 the number of samples are plotted versus the ∆R losses of 1.5 mil gold wires 
at 22.6°C and 34.6°C sorted in ascending order, and the cumulative distribution function 
(CDF) of the normal distribution is fitted to the plots. The figure demonstrates that the 
data scatter of the gold-indium reaction can be fit reasonably well by a “normal” 
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distribution function.  In figure 15 the ∑ values from figure 14 for 1.5 mil wires and those 
of table I for 4 mil wires are plotted versus ∆R. There is a lot of scatter in the ∑- values, 
they do not nicely fall onto a straight line, but neither should one expect that, since they 
are taken at various temperatures. Nevertheless, it is clear that the data scatter ∑ increases 
with increasing ∆R, and to first order, ∑ appears to increase linearly with ∆R. Two linear 
fits are shown in figure 15: in black a fit to ALL data,  
            ∑average = 0.16* ∆R                (3) 
 and in red a fit only to the largest ∑ of table I for set “48”  
                                        ∑max = 0.24*∆R.                  (4) 

 
Figure 15.  The standard deviation ∑ as a function of mean gold wire radius loss ∆R of 
two sets of 1.5 mil wires, and the 4 mil wire sets of table I.  
 
VI. “Vetting” of the functional dependence ∑= f(∆R)  of part V) using the 
“PeggyDataSet”. 
It is clear that more data sets at constant temperatures and at longer exposure time in the 
range of interest here are highly desirable, but for now the two linear dependences of ∑ 
on R will be used, first to check whether they are consistent with the data scatter 
observed over 30 years on 1.5 mill wire data (named “Peggy”) at higher average 
temperatures than the sets of figure 1. Thereafter equation 4 (∑max = 0.24*∆R) will be 
applied to predict the future data scatter for 4 mil wires. In figure 16 equation (2) is fitted 
to the ∆R values of the “Peggy” data set (thin blue line, called “PeggyFit”). Then 

0

0.5

1

1.5

2

0 5 10 15

∑ vs ∆r correctMay16

∑, µm
∑ max

Sy
st

em
33

 4
m

il
Sy

st
em

48
 4

m
il

Sy
st

em
76

 4
m

il

Sy
st

em
94

 4
m

il

34
.6

°C
  1

.5
m

il

22
.6

°C
 1

.5
 m

il
~ 

20
 °C

 4
 m

il 
St

or
ag

e

y = -0.10906 + 0.15655x   R= 0.81139 

y = 0 + 0.24194x   R= 1 

∑
, µ

m

Mean Radius Loss ∆R, µm

Temperatures varying 
between 5 and 40 degree C



 17 

equation (4) (∑max = 0.24*∆R) is added to or subtracted from the PeggyFit and the results 
are plotted as medium thick purple lines labeled (PeggyFit+1∑max) and (PeggyFit-
1∑max). Equation 4 added twice to or subtracted twice from PeggyFit results in the thick 
red lines labeled (PeggyFit+2∑max) and (PeggyFit-2∑max). There are 69 data points in 
the PeggySet of which 35 (=52%) lie within the lines PeggyFit±∑max and 65 (=94.2%) 
lie within the lines PeggyFit±2∑max. A data set with a perfect normal distribution would 
have 68.27% and 95.45%, respectively, between those lines. 4 data points (=5.8%) lie 
beyond the red PeggyFit±2∑max lines versus 4.55% expected in a normal distribution. 
No data point lies close to or beyond the PeggyFit±3∑max lines (nor drawn). 

 
Figure 16. Fit (thin blue line) of equation (2)  (see box) to ∆R, and ±∑ (thicker purple 
line) and ±2∑ (very thick red line) curves generated by adding the values 
±∑max(R)=.24*∆R (equation 4) and ±2*∑max(R)=2*.24*∆R, respectively, to equation (2). 
The fit of equation (2) results in an average temperature of 38.76°C during the life of the 
PeggySet. 
 
 One should not expect that the total number of data points acquired over many 
years from samples whose time/temperature history is not completely known behaves 
exactly like a data set with normal distribution. It is, however, comforting to observe that 
∆R±∑ predictions based on equation (2) together with equation (4) {∑max = 0.24*∆R} are 
close to ∆R values observed experimentally over thirty years on a header set and that all 
data lie below the ∆R±3∑ lines. 
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  In contrast, in figure 17, where equation (3) {∑average= 0.16*∆R)} is used to add 
±∑average,  ±2*∑average, ±3*∑average to the equation (2) fit to ∆R values of the PeggySet, a 
few data points do lie at or even beyond the brown PeggyFit±3*∑average lines.  
For that reason the prediction of data scatter for the 4 mil data set in part VII will be 
based on using equation (2) to generate the average radius loss ∆R, and equation (4) 
{∑max= 0.24*∆R} to generate ∑s.  

 
 
Figure 17. Fit (thin blue line) of equation (2) (see box) to the PeggySet and ±∑ (thicker 
purple line) and ±2∑ (even thicker red line) and ±3∑ (very thick brown line) curves 
generated by adding ∑average(R)=0.16 *∆R (equation 3), 2*∑average(R)=2*.16*∆R and 
3∑average(R)=3*.16*∆R, respectively, to equation (2) with T= (273+38.76)°K. 
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VII) The average gold radius loss ∆R and its standard deviations ±∑max, ±2∑max, 
±3∑max for the 4 mil wire set up to age 100 years predicted using equations (2) and 
(4). 
 
 The data set “76” experienced the highest temperatures. To calculate ∆R values 
equivalent to those seen in figure 13 where “76”s actual temperature history was 
quadrupled to reach age 100 years, i.e. ∆R= ~ 14µm, an average temperature of 28 °C 
was used in equation (2) go generate the ∆R curve in Figure 18.  The final ∆R value of 
14µm predicted here for 4mil header sets after 100 years at ~28°C is about the same as 
the experimentally observed ∆R value reached in the PeggySet (see figures 16 and 17) 
after about 30 years at ~ 38°C. In figure 16 the ±∑max curves represent the scatter of the 
experimentally observed ∆R values reasonably well, 94.2% lie within the ±2∑max curves, 
and the remaining data are very close to ±2∑max curves, far away from ±3∑max curves. It 
is thus sensible to assume that data sets “33” to “94” will show the same behavior as they 
age to 100 years. Hence such sets should with high confidence generate experimental ∆R 
values that lie within the ∆R±3∑max curves shown in figure 18. 

 
 
Figure 18. Equation  (2) with T= (273+28)°K (blue circles) and ±∑max (purple crosses) 
and ±2∑max (red circles) and ±3∑max (brown triangles) curves generated by adding 
∑max(R)=.242*∆R (equation 4), 2*∑max(R)=2*.242*∆R and 3∑max(R)=3*.242*∆R, 
respectively, to equation (2). 
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VIII) Effects of circular geometry on the integrity of the AuIn2 layer, and hence on 
diffusion-controlled gold radius loss. 
 
 VIII.1) Description of the effects. 
 

 
 
Figure 19. Left: In planar geometry the growing AuIn2 easily pushes gold and 
indium/solder material apart. Right: in circular geometry the next growing AuIn2 layer 
stretches and potentially cracks the former AuIn2 layer. 
 

Diffusion control of indium through the growing AuIn2 layer required for the 
applicability of equation (2) is only assured if the layer is integer, without cracks. That is 
probable in un-constrained planar geometry where AuIn2 growth simply pushes the faces 
of gold and of the source of indium (either solder or pure indium) further apart (green 
arrows in the left part of figure 19). Equation (2) is partially, and Millares’s equation [3] 
is wholly, derived from AuIn2 growth in planar geometry. In cylindrical geometry, 
however, new AuIn2 growth deforms and may crack the existing AuIn2 layer, thus 
producing rapid diffusion paths, unless the mechanical properties of AuIn2 and solder are 
such that AuIn2 is pliable enough and the surrounding solder is strong enough to 
plastically deform the existing AuIn2 layer to avoid forming cracks or to heal the cracks 
that do form. The mechanical properties of AuIn2 have been described as “friable” with 
“Diamond Pyramid Hardness Units” between 55 and 77 (=.54 -> .76 GPa) [2]. Here we 
use nano-indentation to measure the mechanical properties of AuIn2 “as grown” and of 
the constituents of the solder, i.e. Pb/In and Sn/In. 
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VIII.2) Morphology of AuIn2, and of Pb/In and Sn/In “grains” in an axial 
section of a solder mound, and hardness and elastic modulus measurements 
of Au, AuIn2, and of Pb/In and Sn/In “grains”. 
 

 
 
Figure 19. Location of nano-indentation on an axial section 1.5 mil gold-wire in a solder 

mound.  
 
 To determine mechanical properties nano-indentations were made with a 
Berkowitch diamond tip as shown in figure 19 into gold, AuIn2 close to the gold wire, 
and into Pb/In and Pb/Sn “grains”. AuIn2 locations were chosen close to the gold wire’s 
surface to assure well-formed material. It is evident from figure 19 that the outer AuIn2 
layers are either porous or full of Pb/In inclusions, as might be expected from the 
arguments in section VI.1, since the outermost layer has been stretched to approximately 
twice the diameter it had when it was initially formed at the skin of the gold wire with 
approximately 39µm diameter. If the dark pores in the outer AuIn2 layers are filled with 
Pb/In, it would imply that outer AuIn2 layers crack as the next layer is formed and that the 
relatively soft Pb/In (see figure 20 below) is squeezed into those cracks by the 
surrounding solder during the “healing” process. The much harder Sn/In (see figure 20) is 
clearly NOT incorporated, it is pushed away, and the shapes of the Sn/In grains near the 
outer surface of the AuIn2 “ring” are different from their shapes in the bulk, indicating 
that they have been deformed by the constraining bulk of the solder mound as AuIn2 
grows. This constraining force is weakest where there is the least bulk, namely where the 
gold wire exits from the solder mound. One would expect at that location greater porosity 
of AuIn2 and less Sn/In grain deformation. That is, however, not very evident in figure 
19, but more so in figure 22. 
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Figure 20 summarizes the results of the nano-indentation measurements. 
 

 
 
Figure 20. The mechanical properties of Au, AuIn2, Pb/In and Sn/In determined by 

nano-indentations performed on an axial section of a solder mound. For 
comparison the literature properties of copper and gold were added. 

 
The hardness of AuIn2 we measure is greater by more than a factor 2 than that 

measured in reference [2]. AuIn2 has clearly greater hardness and elastic modulus than 
any other material in the axial section, but it is not as hard (and hence brittle) as glass. It 
can certainly easily deform Pb/In and even Sn/In. Clearly the strength of the bulk of the 
solder is needed to accomplish the plastic deformation of AuIn2. That deformation is, 
however, not guaranteed to be perfect, and hence the growing AuIn2 layer can not be 
expected to be always integer and free of crack-generated easy diffusion paths that are 
inconsistent with the application of equation (2). 
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VIII.3) Physical evidence of imperfect local diffusion control and incomplete 
plastic deformation of AuIn2 resulting in local “runaway” AuIn2 growth in 
solder sections and less than theoretical AuIn2 density, respectively. 
 

 

 
 
Figure 21. Four cross sections showing “flat spots” on the gold wire with concomitant 
local increase in gold-indide formation. 
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Figure 22.  Radial section (upper portion) of a solder mound of one of the sets “33à94” 
and axial section (lower portion) of a solder mound after accelerated aging. 
 
The radial cross sections of figure 21 and 22 show very clearly that local fast paths of 
indium transport to the gold surface occur: variations in gold radius loss (“flat spots” on 
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the gold wire) with concomitant increased AuIn2 formation are quite common. These 
radial sections are a local “snapshot” of what occurs all along the wire inside the solder 
mounds. The juxtaposition of a radial section through one solder mound and the axial 
section (at much lower magnification) through both solder mounds of the same header in 
figure 22 demonstrates that: there are variations of the AuIn2 and Au diameter all along 
the wire. 
 

 
 
Figure 23. Axial section through one solder mound of a header after accelerated aging at 
elevated temperature to a gold loss of ∆R=(101.6-13)/2= 44.3 µm. 
 
Figure 23 shows the incomplete plastic deformation-healing and resulting porosity of the 
AuIn2 layer inside the solder mound and, more pronounced, at the exit point of the gold 
wire from the solder mound, where the strength of the surrounding solder is weak, 
resulting in “bull-nose” formation. The measured AuIn2 and Au diameters shown can be 
used to calculate the deviation of the measured volume of the AuIn2 layer from the 
volume expected from its theoretical density (ρAuIn2=10.23 g/cm3 [5]). Using the density 
of gold (ρAu=19.3 g/cm3) one can readily calculate that a unit volume of Au results in 
4.2 unit volumes of AuIn2, and that the expected cross sectional area of AuIn2 is given by 
 
 

                                                
5 Gmelin, Handbuch der Anorg. Chem. Vol. 62, p. 831. Verlag Chemie 1954. E. Zintl, A. 
Harder, and W. Haucke, Z Phys Chem B-Chem E 35 (1937). 
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AuIn2AreaExpected = (4.2*(π/4)*(OriginalAuDiameter-MeasuredAuDiameter2)       (5)  
 
=  33493.3 µm^2 

while the measured cross sectional area of AuIn2 is 
     
 AuIn2AreaMeasured = (π/4)*(AuIn2Diameter2-MeasuredAuDiameter2)                (6) 
     

          =  43240.9 µm2 
     Hence, the AuIn2 formed inside the solder mound is not completely plastically 
deformed during its growth, it has, on average, only about 78% of its theoretical density; 
its density is even less at the exit of the gold wire from the solder mound. Therefore local 
deviations from diffusion-controlled growth must be expected. 
 
IX.) Summary and Conclusion 
 
The diffusion control model applied to the actual time/temperature history is shown to fit 
the experimentally observed gold radius loss ∆R of a set of 4 mil headers of widely 
varying temperature histories very well, always within the measuring error.   A functional 
dependence ∑(∆R) of the standard deviation ∑ on the magnitude of the average radius 
loss ∆R is deduced from ∑ values of existing ∆R data sets of 1.5 mil wires together with 
the ∑ values of this 4 mil wire set. This ∑(∆R) functional dependence is tested on the 
scatter of data measured on 1.5 mil wires held at temperature  for approximately 30 years, 
and found to be consistent with those measurements. The diffusion control model 
together with the ∑(∆R) function is used to predict ∆R, ∆R±∑, ∆R±2∑, ∆R±3∑ for times 
up to 100 years.    
The maximum expected gold radius loss ∆R+3∑ is predicted to be 24µm at age 100 
years. 
 
Local deviations from diffusion control caused by imperfections in the AuIn2 layer are 
shown to be expected in circular geometry, and documented in a number of radial and 
axial cross sections of solder mounts of this set of 4 mil headers. The average density of 
the AuIn2 layer inside the solder mound is shown to be about 25% less than its theoretical 
density, indicating incomplete “healing” of cracks in the expanding AuIn2 layer by the 
surrounding solder. 
 
The hardness and elastic modulus of AuIn2 and of Pb/In and Sn/In grains have been 
determined by nano-indentation.  
 
The appendix shows that Millares’s equations leads to almost the same results as the 
diffusion-control model. This close agreement of two models based on different data sets 
suggests strongly that the gold loss in the low temperature range of interest can be 
predicted with confidence. 
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II) Appendix. 

 
Comparison between Millares’s model and the LLNLdiffusion-control 
model. 

 
In the introduction it was pointed out that Millares [3] has independently developed from 
measurements of the reaction of gold with indium in planar geometry above 50°C a 
model that combines the linear and diffusion controlled reaction. Millares postulates that 
at all times the total time needed to form AuIn2 is determined by adding the time that 
indium atoms needs to diffuse towards the gold surface through the AuIn2 layer to the 
time needed at the gold surface to form AuIn2, resulting in the equation 

 
Reaction time treaction = x2/Kp + x/K1      (7) 
 

Where x is the thickness of the AuIn2 layer. After converting AuIn2 thickness to gold 
thickness lost, polynomials of the form treaction= A + B*x + C*x2 were fit to Millares’ data 
at all his data plotted as “Time, Month” versus “Measured Gold Loss X, µm”. An 
example is shown in figure 24 for data at 100°C. Not all fits produced as credible a fit. In 
that way “Kp^-1AuMonthPolynomialFit” and “K1^-1AuMonthPolynomialFit” were 
deduced. 

 
Figure 24. A polynomial fit to Millares’ data at 100°C. 
 
In the same way “Kp^-1AuMonthLLNL”+ “K1^-1MonthLLNL” values can be 

defined for the linear and diffusion-control model discussed in part III for the regimes in 
which they are valid, as discussed in detail in reference [2].  
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Figure 25.  A plot of Millares’ fit to his data called “Kp^-
1AuMonthMillaresData” and “K1^-1AuMonthMillaresData” as published, our fits to 
Millares’ data called “Kp^-1AuMonthPolynomialFit” and “K1^-
1AuMonthPolynomialFit”, plus “Kp^-1AuMonthLLNL” and  “K1^-1MonthLLNL” 
versus inverse temperature, together with exponential fits to all pairs. 
 
In figure 25 exponential fits are derived to allow extrapolation of Millares’ work to lower 
temperatures. With these exponential functions for Kp and K1 one can calculate the gold 
loss ∆R as a function of time (month) for temperatures below 50°C,  

 
∆R=√[time*Kp+(Kp/2K1)2] - (Kp/2K1)   (8) 

 
 



 29 

 
Figure 26. The first 9 lines in the box and their corresponding curves are the gold radius 
losses ∆R calculated using equation (8), employing both K1 and Kp equations derived in 
figure 25 even for “DeltaXGoldLLNL” in the upper three lines in the box, where K1 and 
Kp each should only be used in its appropriate range, as described in reference [2]. 
Consequently curves corresponding to those upper three lines underestimate the gold loss 
∆R. The first two of the last three lines use in equation (8) for “DeltaXGoldLLNL” only 
either the value of K1(linear with time) or Kp (proportional to √time) at 20°C. The 
corresponding dotted red lines intersect at times above 100 month where the reaction 
becomes diffusion-controlled. The curve corresponding to “Diffus’nControl” matches the 
measured ∆R value of the “storage set” of part II.1.) at 333.5 month, as in part III.2.). The 
“green” curve “DeltaXGoldMillaresData20C” based on the extended exponential fit of 
the K1 and Kp values published by Millares is only slightly below the measured 
∆R=4.7µm value of the storage set. The “blue” curve at 20C based on our polynomial fit 
to the Millares data is lower than ∆R=4.7µm.  at 333.5 month. 
 
In summary, here is what figure 26 shows: 1) all models show a slope of ½, i.e. diffusion 
control after about 100 month, which is used in the LLNL “diffusion control” model. 2) 
using extensions of Millares’ published K1 and Kp values to lower temperatures 
produces at 20°C a ∆R value close to what is observed experimentally.  
This close agreement of two models based on different data sets suggests strongly that the 
gold loss in the low temperature range of interest can be predicted with confidence. 
 
 
 
 


